
 73

Chapter 5: Writing for Software Developers

I have read a number of books about writing, from Nathan Barry’s
Authority to Stephen King’s On Writing to recent editions of
Writer’s Market. In my experience, books about writing (except for
style guides) tend to dedicate only a small fraction of their length to
what happens when the writer is actually writing. Until I sat down to
write my own book about writing, I found this disappointing. How
could you write about writing without, well, writing about writing? It
turns out that there are two primary causes for this widespread
phenomenon. First, writing is a very individual process that is hard
to describe in the abstract or teach conceptually, unless you are
addressing specific aspects like grammar or usage. Second, most of
what happens around writing is the opposite: easy to describe, but
not intuitive to figure out. Thus, I am joining a long tradition by
dedicating only one chapter to writing.

I often get asked about my writing process, and I also ask
other writers who I respect about their writing process.
The writing process tends to be intensely personal to
each writer, and I don’t necessarily know that it is
generalizable. I don’t write in the way that some of my
favorite writers write, nor have I been able to teach
people successfully how to write in the way that I do. I
have generally been unable to operationalize things that
people have attempted to explicitly instruct me on with
respect to making my writing process more effective. —
Patrick McKenzie

The writing process is the hardest part of this whole endeavor.
David McCullough, a Pulitzer Prize and National Book Award
winning author, famously said, “Writing is thinking. To write well is
to think clearly. That’s why it’s so hard.” Adapted to software

 74

engineering language, writing about programming forces us to
operate at a different level of abstraction than we normally do while
programming, and to do so along an axis that is perpendicular to
the levels of abstraction that we more regularly traverse. However,
sufficient work on outlining and, when needed, sample code can
make the writing itself feel achievable.

5.1 The Actual Words

With completed sample code (if appropriate), research, and an
outline completed, your actual writing process should feel steady
and achievable. It is still the hardest part, in my experience, but
with enough time and practice, it should begin to feel like a regular
part of your work rather than a recurring miracle.

The testing and gathering phase continues for a while,
until I feel like, “Okay, in broad strokes I know the
approach I’m going to take on this piece.” Then, I get to
the extremely non-replicable portion: I sit down at a
desk, drink a lot of coffee, and write like a man
possessed for six hours. — Patrick McKenzie

For a book on writing, I have been remarkably short on
metaphors. I seek to rectify this oversight by asking you to imagine
that you are building a bridge for your readers to cross. On one
shore stand your readers, secure in the land of existing knowledge.
Your task is to construct a safe passage over a wide strait of
uncertainty to the island of new understanding.

Now, you cannot simply lay planks for miles and hope that they
stay rigid. To cross wide spans, you must construct additional
pylons to support the overall structure. Sample code, cited facts,
diagrams and images, and other discrete certainties are the pylons
spanning the strait. The outline determines the order and distance

 75

between these structures. Your job in the article itself is to span
each gap with explanation and intuition. Matt Levine, for example,
writes his newsletter using block quotes as pylons:

A lot of my audience is in some way technical and is
interested in the technical details of these things. The
block quote is the equivalent of the code; they want to
see the guts of the thing. My commentary will be some
sort of deep structure explanation or some sort of joke or
something, but I’m not going to tell the guts in a way that
is more accurate or specific than what the guts are, so I
might as well just show them. Again, people can skip it.
People who are interested in the technical details are
going to read the block quote and people who are
looking for the jokes can skip right over the block quote
and not miss the jokes. It’s a nice way to segment the
readership. — Matt Levine

The two main tools for your task are the questions “Why” and
“How.” Before each pylon, establish why it is needed. After each
pylon, describe how it functioned to get you closer to the
destination. Motivating and explaining code helps avoid the trap of
simply repeating yourself by explaining concepts in code and again
in words. Other classic questions from journalism, “Who,”
“What,” “When,” and “Where,” are usually best answered in the
introduction and conclusion. In our metaphor, these are the on
and off ramps of the bridge.

5.1.1 Craft and Style

At the craft level, there are a few things to keep in mind. These are
general heuristics that make sensible defaults. You will know when
it is right to deviate from these guidelines. The most common
reason to deviate is to conform to a given publisher’s style guide.

 76

I prefer to write in the first person (I write this) and second person
(you write that), as I have been doing for this whole book. I
especially like the first person plural (we do this, we now
understand that). To my ear, this establishes a conversational tone
and familiarity that mimics explaining a concept to someone one-
on-one. “I” and “you” establish distinct characters in your text. As a
general rule, I try to avoid using the third person (one writes that).
However, for articles about more abstract concepts, I will
sometimes write in the third person. This helps when synthesizing
and analyzing sources or conveying other concepts that I do not
have direct experience with.

Default to present tense. Of course, use the past tense to describe
the past (Python 3 was released in 2008) and the future tense to
describe the future (Django 3.0 will be supported through 2021).
Otherwise, stick with the present tense for the bulk of most articles
because the reader is following along with your tutorial in the
present moment. Thus, when you write instructions like “copy the
following HTML into index.html,” you are describing the action
that they are taking in the moment that they are taking it in.

Most writers and editors tell you to avoid passive voice. Passive
voice is where the object of a sentence is being acted upon by the
subject. In active voice, Sarah writes the program, in passive voice,
the program is written by Sarah. In general, I agree with this advice.
In technical communication, it is critical to identify the correct
cause and effect in a system. Active voice combats ambiguity.

Keep your syntax and usage accessible but interesting. Do not
throw around ten-dollar-words just for the sake of it, but be precise
in your diction; if there is a word that expresses your exact
meaning, use it. At the same time, be generous to your reader. If
you suspect that the precise term may not be familiar to your

 77

reader, offer a definition of the word or acronym after you use it
for the first time in your article. Keep your target reader in mind;
define any terms, technical or otherwise, that might trip them up.
For example, in the article in Chapter 8, I define “iambic
pentameter” but assume that readers know what “URL” means.

Vary your sentence length. A long sentence can be helpful in
expressing a complex connection, its multiple clauses conveying
substantial detail. Be careful not to sacrifice readability to length.
Solid, clear prose with a bit of flair where appropriate will establish
your presence as a writer and will communicate your ideas
effectively.

I think there’re fine lines between too much personality
and just enough personality and almost none. Some
people will use their personality and apply it to the
article, but then it takes away from the actual content.
There’s a lot of fluff that I remove from guest-author
articles, and that just goes to skimmability. People want a
couple lines of personality and then they want to get to
the actual good parts of the technical stuff of the article.
Definitely try to test out how things are. When I say test
out, I mean definitely try different writing styles, push it
out, see what the community thinks and get feedback
from that. Writing is such a dynamic thing: it’s a give and
take between you and your readers. Just see what your
readers like and go from there. — Chris on Code

5.1.2 Voice

There is a perfect secret for developing a clear, natural voice in
your writing. Using this technique, you will learn to channel your
personal, inimitable style into your writing. I have not yet mastered

 78

this approach to voice. This mystic wisdom is easy to write but hard
to read.

Here it is: there is no point in attempting to develop a voice in
writing because you already have one. That is the secret. That does
not mean that you should not pay attention to how your writing
sounds. When evaluating your own work, look for phrases that do
not sound like something you would say in real life. This is what
needs to be fixed for your voice to naturally reveal itself over time.
Imitating other writers’ style is an incredibly useful exercise for
developing your craft and specific techniques, but outside
influences should melt into the background that you bring to each
written word. While this is a process that will happen, it does take
time and consistent practice.

If you just write for publication every day, you’ll develop
your own voice naturally. My perception was that
blogging, writing on the internet, was like writing an email
to your friends. There’s really no better way to write
naturally and in a conversational style that sounds like
yourself than thinking about your writing as writing an
email to your friends. I had experience writing emails to
my friends at Goldman Sachs and making jokes and
trying to be funny while also assuming a pretty high level
of specific financial knowledge. That was a useful
experience to draw upon when writing for a publication.
In fact, I remember six months or a year into my job at
Dealbreaker having dinner with some of my Goldman
friends and one of them saying, “You know, you really
sound like you now. You didn’t used to sound like you
when you started; now you sound like yourself. I read
you and I’m like yeah, that’s Matt.” That was a validating
moment for me. When I write, it clearly is a persona, but

 79

the main aspects of developing a voice is not so much
developing that persona but stripping away artifice and
things that you’ve tried to pick up from elsewhere so that
the writing sounds more like your conversational style. —
Matt Levine

More than a byline or author bio, your voice is your signature on
the page. It is why teaching writing is so difficult. It is why you like
some authors more than others. It is more than just words, it is
how those words occur to you that matters. Practice, but trust
yourself. Trust your voice.

For differentiating yourself in writing, I think it’s really
just about finding your own voice. That comes with
practice. I graduated from Iowa State University. At Iowa
State I blogged for the university on cyclonelife.net. I had
to write three or four blogs every week for them and so it
was really just a matter of practice. The more I wrote for
them the more I developed what my tone sounded like
and what my voice sounded like…. I think that’s what a
lot of people are hesitant to do, they’re like, “Ah, well, I
want to blog, but I don’t really have a voice. I need to
develop that voice.” I think that just comes with putting
pen to paper, writing stuff down, and actually writing out
blog posts and developing it over time. — Cassidy
Williams

5.1.3 Your Writing Practice

Each time you sit down to write, focus your attention on one
discrete part of your article. If the article’s sections are too big to
tackle, break them down. With only your outline, research, and
relevant code in front of you, write a section in simple,
straightforward words. Try not to get hung up on making the

 80

language pretty or elaborate, just get the words on the page. It will
be much easier to adjust your work when you have a piece to edit.

You know if you are a marathoner or a sprinter, and you can set
your writing schedule accordingly. Planning to write a little bit of
the article, or one plank of the bridge, at a time will take some of
the worry out of writing. Plan your writing time; these writing
blocks do not need to be long, twenty to forty-five minutes, but they
should be as sacrosanct as any other appointment on your
calendar.

In his booklet Learning Technical Writing Using the Engineering
Method, Professor Norman Ramsey presents eight practices of
successful writers, which he has generously allowed me to
reproduce here.

1. Pause mindfully, frequently. Mind your body, thoughts, and
feelings — and the stage of your work.

2. Write in brief daily sessions. Ignore the common myth that
successful writing requires large, uninterrupted blocks of time
— instead, practice writing in brief, daily sessions.

3. Focus on the process, not the product. Don’t worry about the
size or quality of your output; instead, reward yourself for the
consistency and regularity of your input.

4. Prewrite. Don’t be afraid to think before you write, or even jot
down notes, diagrams, and so on.

5. Use index cards. Use them to plan a draft or to organize or
reorganize a large unit like a section or chapter.

6. Write a Shitty First Draft™. Value a first draft not because it’s
great but because it’s there.

7. Don’t worry about page limits. Write the paper you want,
then cut it down to size.

8. Cut. Plan a revision session in which your only goal is to cut.

https://www.cs.tufts.edu/~nr/pubs/learn.pdf
https://www.cs.tufts.edu/~nr/pubs/learn.pdf

 81

Keep these principles in mind as you develop a steady, reliable
writing practice. As I learned while writing articles and learned
again while writing this book, time in the chair is the only way that
words get written.

5.1.4 Markdown

Write in Markdown. Unless you are a wizard with LaTeX or your
client specifically requests a different format, Markdown is the
smart default: you can write Markdown in a different buffer of
whatever editor you are using for your sample code; it has all of the
formatting you need for both words and code; it is compatible with
version control; and it is interoperable with most publishing
systems, or at least it is easily convertible into a format that is. If
you do not know Markdown already, it is among the most powerful
tools you can learn in five minutes.

5.2 Graphics

As you are writing, you may realize that your words and sample
code would be even clearer if supported by graphics. Screenshots,
pictures, and diagrams are a supplement to, not a replacement for,
good writing and complete sample code. Make notes to yourself
while writing your first draft as your realize a need for any form of
graphic. Once the draft is complete, move on to creating them. If
you have trouble finding or creating graphics, reach out to your
editor. They can help you with the process, and sometimes will
find or make graphics for you.

There are three kinds of graphics that I use in articles: screenshots,
pictures, and diagrams. They each have their own use cases,
advantages, and drawbacks. Graphics are a great way to break up
walls of text and keep readers engaged, but when overused can
overburden the writing.

 82

Screenshot from Chapter 9’s Tutorial

Screenshots are useful when you are creating a tutorial on building
or interfacing with anything that presents a graphical user interface,
be it an app or website. A screenshot of the full system at the
beginning of the article can pique a reader’s imagination. A few
screenshots at key checkpoints can help readers ensure that they
are following along in their own implementations without issue. Pay
careful attention to ensure that your screenshots match the actual
state of the system as developed in the article rather than during the
experimentation phase in sample code writing. When using
screenshots to guide your reader through an existing user interface,
make sure you are consistent and complete in describing the

 83

actions that they should take and the feedback they should receive.
In all cases, it is useful to annotate screenshots by circling or
highlighting key elements for the reader to focus on.

Picture from Chapter 10’s Article (“Macbeth: First Folio” by Matt
Riches on Unsplash)

Pictures provide visual context for your writing. Unlike screenshots
and diagrams, I generally do not create my own pictures.
Fortunately, there are a number of royalty-free, attribution-free,
and other open-licensed image repositories online. My favorite is
Unsplash, but there are many others. My most common use case
for a picture is as the article’s header image for blog software. My
second most frequent use is to break up sections in long, abstract
articles. Avoid using too many general pictures because they do not
directly contribute information to a piece and your readers have
seen similar images hundreds of times in the same context.

 84

Diagram from Chapter 8’s Tutorial

Charts, graphs, and other custom diagrams are the most useful
graphics that you can include, but also the most time-intensive to
create. My workflow of choice is Autodesk Sketchbook on the iPad
with the Apple Pencil, but there are dozens of software options for
both handwritten and computer-generated graphics. You can go as
low-tech as a pen, paper, and a smartphone camera. What is
important is finding a tool that works for you and becoming
proficient with it. With charts, you can help visual learners engage
with your work and you can express complex relationships that are
difficult to convey in writing. Diagrams also serve as excellent
introductions or summaries for concepts; they provide readers with
a concrete expression of your ideas.

 85

5.3 Overcoming Writer’s Block

Everyone experiences writer’s block differently. “Writer’s block” is
the failure to make effort or progress on a writing task. For me, it
generally occurs when I am working on an article but do not have a
clear next step. Regardless of the stage of the project, it is hard to
sit down to work on something unless I know roughly what I am
supposed to be doing. This issue can stem from one of several
causes.

Sometimes, there is a gap in my knowledge of the subject, a sort of
“unknown unknown.” To solve this issue, I read more sources,
write more test code, explore more real-world systems, or
otherwise step away from the writing process and back into
research. I do not believe in waiting for inspiration, though thinking
about writing does take time. Keep researching and having both
intentional, structured thinking and ad-hoc shower thoughts until
you come to a breakthrough.

One part that is really important to me is that I will read
a complicated thing and something will hit me on an
emotional level. Something will hit me where I’m like,
“that’s beautiful” or “that’s an amazing thing that they’ve
figured out” or “what a crazy trick they did” or “look how
convoluted and strange this was.” I will have a reaction
that is direct and visceral and if I don’t, I won’t write
about it. The trick is that something intuitively resounded
in me that made me have that reaction and I want to
create or explain that reaction for my readers…. If you’re
trying to explain a complicated thing, period, it’s
complicated. But if you have a strong, clear reaction to
the thing, walking people through your steps to get to that
strong, clear reaction is an easier thing to do because you

 86

feel it, you want to make jokes about it, you want to
express it in a clear way. — Matt Levine

Sometimes I know enough to write about the topic, but the topic is
way too big to fit into a reasonable article. This means that I made
mistakes while outlining. The first step is to rigorously narrow the
article’s scope by considering the audience for the article. I remove
both prerequisite knowledge and less valuable tangents based on
explicit assumptions about my target audience. Instead of including
these tangents, I can keep my focus narrow by linking to other
sources at the end of the article to give the reader a more in-depth
look at my subject.

Beyond the scope and my knowledge, sometimes the structure,
outline, or topic of the article does not hold up during the writing
process. Perhaps the lesson turns out to be obvious, the code
trivial, or the article derivative. Again, this is a breakdown in the
outlining and research process, so the best step is to set aside the
article as it stands and revisit research and outlining to find a
unique angle for the article or a better match for the existing
content to a readership.

To write good tutorials you have to be able to put
yourself in the shoes of people who need them. So if it’s
help tutorials, if it’s for things that are broken or how to
set something up, you have to put yourself there. You
really have to try it from that perspective, even if that
means blocking off some of your existing knowledge and
approaching this as if you were the person who you’re
writing for. — Angel Guarisma

I would be remiss to neglect how your working environment affects
your writing. When I am constantly checking social media, dealing
with distractions or interruptions, overly tired, or otherwise not in a

 87

good physical or mental place to work, I do not make progress. I
treat writing an article the same as I do writing code; writing
requires the same level of care in constructing an intentional,
effective working environment.

I avoid writer’s block by scheduling my writing time, working on
small, achievable sections of my task, and relying on my research,
outline, and sample code. I also have reinvested some of my
earnings from writing in equipment that is a joy to use. I write
almost every day and am flexible in changing my methods to adapt
to my environment and circumstances. I even have dedicated
writing playlists. This is what works for me; use it as a starting point
in figuring out what works for you.

//TODO
1. Write your article. Do not try to write the whole thing in one

sitting. Break down writing sessions according to your outline.
1. Write the introduction to your article
2. Write the first section of your article
3. Write the second section of your article
4. … Write the nth section of your article
5. Write the conclusion of your article

2. Find or create graphics that you think your article might need.
If you get stuck, reach out to your editor for help.

3. Do not worry about word choices or the flow of your article
until you have a complete draft. It may be very rough, but
what is important is having something to revise.

	Prologue: Why Write Technical Content
	Chapter 0: You and Your Guide
	0.1 Intended Audience
	0.2 About This Handbook

	Act 1: The Craft
	Chapter 1: Finding and Validating Ideas
	1.1 The 9 Questions Process
	1.1.1 Questions
	1.1.2 Merging Answers

	1.2 Idea Validation
	1.3 Article Lifespan
	/TODO
	The 9 Questions Process Example

	Chapter 2: Publishers
	2.1 Finding Publishers
	2.2 Pitching
	2.2.1 Finding and Pitching Your Second Publisher

	2.3 Working for an Agency
	/TODO

	Chapter 3: Research
	3.1 Finding Sources
	3.2 Evaluating Sources
	3.3 Interviewing
	3.3.1 Finding the Right Interview Subject
	3.3.2 Synchronous Interviews
	3.3.3 Asynchronous Interviews
	3.3.4 What to Ask

	3.4 Citation and Rights
	/TODO

	Chapter 4: Preparing to Write
	4.1 Outlines
	4.1.1 Audience
	4.1.2 Structure
	4.1.3 Contents
	4.1.4 Cancelling an Article

	4.2 Sample Code
	/TODO

	Chapter 5: Writing for Software Developers
	5.1 The Actual Words
	5.1.1 Craft and Style
	5.1.2 Voice
	5.1.3 Your Writing Practice
	5.1.4 Markdown

	5.2 Graphics
	5.3 Overcoming Writer’s Block
	/TODO

	Chapter 6: Editing
	6.1 Content
	6.1.1 Structural Principles
	6.1.2 Code
	6.1.3 Reading Aloud

	6.2 Style Guides
	6.3 Working with Editors
	6.4 Editing for Self-Publication
	6.4.1 Beta Readers
	6.4.2 Professional Proofreading and Copyediting
	6.4.3 Edits over Time

	/TODO

	Chapter 7: Publishing
	7.1 Last Steps
	7.1.1 Skimmability

	7.2 Platforms
	7.2.1 Wordpress
	7.2.2 Ghost
	7.2.3 Static Site Generator
	7.2.4 Ebooks and PDFs
	7.2.5 Print

	/TODO

	Act 2: The Process in Action
	Chapter 8: Example Tutorial: Scraping and Generating Shakespearean Sonnets
	8.1 Reader’s Notes
	8.1.1 Tutorial Outline
	8.1.2 Writing Concepts

	8.2 Complete Tutorial
	Scraping and Generating Shakespearean Sonnets
	Setting Up
	English Class in under 200 Words
	First Stage: Scraping the Data
	Second Stage: Parsing Rhymes
	Third Stage: Building Sonnets
	In Conclusion

	Chapter 9: Example Tutorial: Practicing JavaScript with a Shakespearean Sonnet Generator
	9.1 Reader’s Notes
	9.1.1 Tutorial Outline
	9.1.2 Writing Concepts

	9.2 Complete Tutorial
	Practicing JavaScript with a Shakespearean Sonnet Generator
	Setting Up
	Data Structure: Arrays in Arrays in Arrays
	Making Random Samples
	Building and Adding a String to the HTML
	Making a Sonnet on a Button Press
	In Conclusion

	Chapter 10: Example Article: Computational Poetry
	10.1 Reader’s Notes
	10.1.1 Article Outline
	10.1.2 Writing Concepts

	10.2 Complete Article
	Computational Poetry
	Why Poetry?
	Considering Inputs
	Naive Selection
	Markov Chains
	Neural Networks
	In Conclusion
	Further Reading

	Act 3: The Business of Writing
	Chapter 11: Pricing
	11.1 Per Article
	11.2 Per Word
	11.3 Per Hour
	11.4 Free
	/TODO

	Chapter 12: Contracts and Invoicing
	12.1 Common Clauses in Contracts
	12.2 Writing Your Own Letters of Agreement
	12.3 Invoicing
	12.3.1 Payment Processors
	12.3.2 Payment Terms

	/TODO

	Chapter 13: Intellectual Property and Publication Rights
	13.1 Publication Rights
	13.1.1 Work for Hire
	13.1.2 First Serial
	13.1.3 Second Serial and Anthology Rights
	13.1.4 Retaining Rights
	13.1.5 Online versus Print

	13.2 Software Licensing
	13.3 Attribution
	/TODO

	Chapter 14: Content Monetization
	14.1 Advertising
	14.1.1 On the Death of Advertising
	14.1.2 Affiliate Links

	14.2 Sponsorships
	14.3 Sales and Subscriptions
	14.4 Content Marketing
	14.4.1 Indirect Monetization

	/TODO

	Chapter 15: Promoting Your Work
	15.1 Platforms
	15.1.1 Hacker News
	15.1.2 Reddit
	15.1.3 LinkedIn
	15.1.4 Twitter
	15.1.5 Niche Platforms

	15.2 Email Lists
	15.3 In Person
	15.4 Metrics
	15.5 Search Engine Optimization
	/TODO

	Chapter 16: Long-Term Engagements
	16.1 Books
	16.1.1 Working with Publishers
	16.1.2 Self-Publishing

	16.2 Series
	16.2.1 Columns
	16.2.2 Courses

	16.3 Alternate Formats
	16.3.1 Academic Papers
	16.3.2 Whitepapers and Case Studies
	16.3.3 Videos
	16.3.4 Speaking

	16.4 Jobs
	/TODO

	Appendices
	Appendix A: Complete Interview Transcripts
	Courtland Allen
	Jeff Atwood
	Chris on Code
	Peter Cooper
	Angel Guarisma
	Matt Levine
	Mark McGranaghan
	Patrick McKenzie
	Tracy Osborn
	Daniel Vassallo
	Cassidy Williams

	Appendix B: The 9 Questions Worksheet
	Appendix C: Sources
	Acknowledgements
	Legal

